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The advancing-front method is adapted to describe the evolution of open or closed
three-dimensional surfaces in terms of an unstructured grid consisting of quadratic
triangular elements. In science and engineering applications, the surface may be iden-
tified with a material interface, a free boundary, or a moving front. In the numerical
method, the geometrical properties of the surface and the coordinates of the triangle
vertices are computed either in terms of available analytical expressions, or by means
of interpolation through an underlying coarse grid. The shape and size of the curved
triangular elements are determined by the maximum magnitude of the mean or di-
rectional local surface curvature. Two algorithms are implemented: the first one for
simply connected open surfaces bounded by closed lines, and for closed surface with
plane symmetry; and the second for closed surfaces. In the case of open surfaces, the
discretization front advances from a one-dimensional boundary grid that traces the
bounding curve. The boundary grid is generated either by a one-dimensional version
of the advancing-front method, or by requiring a set of criteria based on local line
representation with circular arcs. In the case of closed surfaces, the discretization
front emanates from the point of the maximum mean curvature. In both cases, the
algorithm also interpolates to generate the values of surface geometrical or physical
variables such as temperature or concentration of a surface-active agent. The method
was tested by following the motion of several passive and active surfaces evolving
under the action of specified fields of flow, while performing occasional regridding
to ensure adequate spatial resolution. In one test, the large deformation of a viscous
drop subjected to an infinite simple shear flow at vanishing Reynolds number was
computed into the regime where a cigar-like shape is established, thereby extending
previous numerical computations for small and moderate deformations and repro-
ducing experimentally observed shapes. Overall, the adaptive-front method emerges
as an important tool in numerical studies of free boundaries or moving fronts and
should be useful in a broad range of applications.c© 1998 Academic Press
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1. INTRODUCTION

The use of unstructured grids based on triangulations to describe the shapes of two-
dimensional contours and three-dimensional iso-scalar surfaces, material surfaces, and fluid
interfaces has been gaining increasing popularity in recent years [1–11]. Compared to a
structured grid that is defined in terms of global surface curvilinear coordinates, the un-
structured grid has several advantages: The local curvilinear coordinates over each triangle
are non-singular, whereas the global curvilinear coordinates may have singular points; the
triangle shape and size may be controlled effectively to enhance the spatial resolution at
regions of particular interest; and the discretization is amenable to the meritorious finite-
volume and spectral-element formulations for solving integral or differential equations over
an evolving surface. Examples are the Fredholm integral equations arising from boundary-
integral formulations of potential or Stokes flow, and the convection-diffusion differential
equation for the transport of an insoluble surfactant.

The need for adaptive surface triangulation becomes evident by inspecting Fig. 1, where
we present the shape of a file of liquid drops moving though a circular tube under the
action of a pressure-driven Poiseuille flow [3]. At the initial instant, each drop has a spher-
ical shape that is readily described by elementary triangulation based on the subdivision
of an octahedron. But as a drop starts deforming, a dimple develops at the back, and the
interface is no longer represented with adequate resolution. In this simulation, the marker
points move with the component of the velocity of the fluid normal to the interface and
with a certain tangential velocity. There is a wealth of other applications where a reliable
description of evolving open or closed surfaces and the accurate computation of their ge-
ometrical properties, including the mean curvature, is imperative. Examples include the
flow suspensions of deformable capsules such as red blood cells, the evolution of three-
dimensional vortex sheets, and the stretching and folding of interfaces in laminar or turbulent
flows.

To prevent grid distortion, the tangential velocity of the marker points may be adjusted
according to certain criteria involving, for example, the rate of change of the length of
the edges of the triangle or the angles subtended between them [3, 7, 8]. One difficulty
with this approach is that a satisfactory set of criteria involving the triangle size, skewness,

FIG. 1. Triangulation of the interfaces of liquid drops traveling through an ambient fluid in pressure-driven
tube flow [3].
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and the surface curvatures is difficult to devise. Even if this were possible, the associated
minimization or optimization problem, whose solution produces the tangential velocity of
the marker points, places a heavy burden on the numerical method [8]. Nakahashi and
Deiwert [12] developed a method for the optimal distribution of the grid points defining
a global structured grid based on variational principles and a grid-spring analogy. More
recently, Cristiniet al.[9] developed a procedure for regridding a three-dimensional surface
based on the idea of allowing the triangles to relax to an equilibrium configuration. The
marker points are connected by, and move under the influence of, damped massless springs;
optimal marker point connectivity is maintained by local reconnection; and a specified local
density of triangles is maintained by adding and subtracting marker points at regions where
the elastic tensions are large.

In this work, we develop a procedure for the dynamical regridding of an evolving three-
dimensional open or closed surface based on the advancing-front method. Originally, the
advancing-front method was developed, as a part of a finite-element procedure, for triangu-
lating a region in a plane [13, 14]. In recent years, the method was extended to handle three
dimensional stationary surfaces with applications in aerodynamics [15–18]. The highlights
of the method in three dimensions are: adaptive triangulation according to a measure of the
local surface curvature; reasonably uniform distribution of triangle sizes; effective control
of triangle skewness; and reduced user intervention. To the authors’ knowledge, the method
has not been implemented to handle the changing shapes of evolving surfaces by means of
regridding, although a step in that direction was recently made. L¨ohner [18] developed an
algorithm for grid refinement that incorporated interpolation of geometrical or other surface
variables from a crude to a refined grid.

In the first part of this work, we discuss an implementation of the advancing-front method
for a grid consisting of curvedquadratic triangular elements; previous work considered
planarlinear triangular elements. The interpolation of geometrical and other surface vari-
ables from the coarse to the refined grid is somewhat similar to that developed by L¨ohner
[18], but there are several differences. We present two general algorithms applicable to
two distinct classes of problems involving: (a) open surfaces bounded by single closed
lines, as depicted in Fig. 2a; or (b) closed surfaces whose exterior is a singly or multiply
connected domain, as depicted in Fig. 2b. The algorithm for open surfaces is also applica-
ble to closed surfaces that are symmetric with respect to a plane. In that case, duplication
by plane reflection produces the whole of the surface. The procedure for open surfaces
incorporates an algorithm for the discretization of a closed curve, which is done in two
independent ways. The two methods are fit as stand-alone routines in problems involving
the motion of lines in two or three dimensions. Analogous algorithms for the optimal dis-
tribution points along closed or periodic planar lines are discussed and reviewed in Refs.
[19, 20].

In the second part of this work, we test and confirm the suitability of the advancing-front
method for describing surfaces and fluid interfaces evolving under the action of a specified
field of flow. In test simulations, we consider passive interfaces advected by an imposed
flow, and active interfaces whose shape affects the development of the flow. In all cases,
the grid points move with the velocity of the fluid, and occasional regridding is performed
to ensure adequate resolution. In the most demanding tests, we combine the regridding
method with a boundary element method for Stokes flow to describe the large deformation
of a liquid drop immersed in simple shear flow, and illustrate the development of slender
shapes.
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FIG. 2. (a) Illustration of an open surface bounded by a closed curve and represented by a collection of curved
triangles. (b) A closed surface represented by a collection of curved triangles.

2. ADVANCING-FRONT METHOD FOR OPEN SURFACES

Consider a three-dimensional lineC defined in terms of an arbitrary distribution ofNc

marker points bounding an open surface, as shown in Fig. 3a. The line segments between two
successive points are edges of curved triangular elements that describe the surface. As a first
step toward implementing the advancing-front method, we redistribute the contour marker
points with two objectives: Achieve a reasonably uniform distribution of edge lengths so
that adjacent triangles have comparable sizes; and resolve regions of high curvature.

We implemented and tested two independent contour-point redistribution algorithms,
henceforth called bounding curve discretization algorithms, as will be described in the
following two subsections. Best results were obtained when the algorithms were applied
repeatedly and in alternating fashion a number of times, but each algorithm alone produced
acceptable distributions, with the first algorithm being the best performer. In the second
algorithm, the geometry of the surface does not play a role in the discretization of the
contour; that is, the method is oblivious to the curve being the boundary of a surface.

2.1. Contour Discretization by the AFM

In this algorithm, we employ a variation of the one-dimensional version of the advancing-
front method developed by Nakahashi and Sharov [16]. The main idea is to proceed from
the point of highest contour curvature toward regions of lower curvature, while continu-
ously monitoring the magnitude of the curvature and the ratio of arc lengths of successively
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FIG. 3. (a) A closed line is represented byNc marker points. (b) Introduction of one or two new nodes along
a line; the labels 1, 2, 3 correspond to the discretization direction index of the point marked with a filled circle.
(c) Introduction of a new node on a curve with pre-distributed marker points, before and after; the pair of integers
next to a point state the discretization direction index and the usage index.

generated segments. A large number of line segments are generated at regions of high curva-
ture, and fewer segments are generated at regions of lower curvature. The steps are as follows:

(1) Number theNc successive bounding curve nodes, moving in a desirable direction
according to the designated side of the triangulated surface as theupperside, as shown in
Fig. 3a. The point 1 coincides with the pointNc + 1.

(2) Describe the Cartesian coordinates of the contour in a parametric manner with
respect to the reduced polygonal arc lengthξ , asx(ξ); ξ = l P/ l P,Tot wherel P is the length
of the polygonal line connecting successive marker points starting from the first point, and
l P,Tot is the perimeter of theNc-sided three-dimensional polygon.

In our implementation, we carried out the interpolation in terms of periodic cubic splines
and found that, in some instances, the cubic spline method without smoothing causes
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significant fluctuations in the computed curvature, thus undermining the effectiveness of the
method. An alternative approach is to abandon the global representation and use instead a lo-
cal representation based on circular arcs passing through trios of adjacent marker points [21].

(3) Assign to each node of the bounding curve the value of either the local curvature of
the contourκc, or of the maximum local directional curvature of the surface that is bounded
by the contour,κMax. The first choice is appropriate when the curve is a stand-alone line;
the second choice is appropriate when the curve is the boundary of an open surface. The
objective in both cases is to introduce a proper length scale that can be used to control the
node spacing.

The local curvature of the contourκc, can be computed from the formulaκch2n=
−∂2x/∂ξ2, wheren is the unit vector normal to the line, andh is the line metric,h= |∂x/∂ξ |.
A simpler method identifiesκc with the curvature of the circular arc that passes through the
node of interest and two adjacent nodes on either side, as described in Ref. [21]. The com-
putation of the maximum local directional curvature of the surface,κMax, will be discussed
in Section 3.

(4) Label each node with adiscretization direction indexthat takes the value of 1 to
indicate discretization only toward increasing node numbers, 2 to indicate discretization
only toward decreasing node numbers, or 3 to indicate discretization in both directions. The
use of this index prevents the discretization from exceeding the designated beginning and
end of the line in parametric space, and eliminates the risk of accidentally deleting nodes
at the step (6)(g) to be discussed shortly. Initially, all nodes are labeled 3, except for node
1 that is labeled 1, and nodeNc + 1 that is labeled 2.

(5) Label each node with ausage indexthat takes the value of 1 to indicate that the
node has been chosen previously as a starting point for the discretization, and 0 otherwise.
Initially, all nodes are labeled with 0.

(6) The core of the algorithm is the curve discretization stage involving several sub-
steps, as follows. Steps (6)(b), (e) attempt to control the arc lengths of the line segments
and produce distributions with smooth variations.

(a) Among the nodes whose usage index is equal to 0, choose the one with the
highest magnitude of the curvature. This node will be called thechosennode.

(b) Compute the arc length1s= 2 sin(α/2)/|κc| or1s= 2 sin(α/2)/|κMax|, where
κc andκMax are, respectively, the curvature of the contour and the maximum curvature of
the surface at the chosen node, andα is a specified angle that is a free parameter of the
numerical method. If the chosen node is node 1 orNc + 1, we skip steps (6)(c)–(e) and
proceed to step (6)(f). Otherwise, we reduce or amplify1s to bring it within a specified
window (1smin,1smax).

(c) If the discretization direction index of the chosen node has the value of 1 or
3, search the points on the left until the discretization direction label changes to 2. Let
the number of the point with the discretization direction label 2 bep. If the discretization
direction label of the chosen node is 2, perform a search on the right until the label changes
to 1. Let the number of the point with the discretization direction label 1 beq. In some cases
only one ofp or q may be found, but this does not present a difficulty.

(d) Calculate the distance1s1 between nodesp and p+ 1 and the distance1s2

between nodesq andq− 1. Compare1s1 and1s2, choose the one with the smaller mag-
nitude, and call it1sRef. Accommodations must be made for cases where one ofp or q has
not been found.
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(e) If 1/φ <1s/1sRef<φ, whereφ is a specified constant, keep1s. Otherwise
replace it with the value of1sRef.

(f) Introduce anewnode; the chosen node and the new node are the end-points of
a newsegment with approximate arc length equal to1s, placed on the appropriate side of
the chosen node according to the discretization index of the chosen node, as illustrated in
Fig. 3(b). If the value of the discretization index is equal to 3, then the segment is placed on
both sides. The coordinates of the new node are found by interpolation from the cubic-spline
representation.

(g) Examine whether one or more pre-existing nodes exist between thechosenand
thenewmode. If the discretization direction index of the pre-existing node is equal to 1 or
2, replace the new node with the pre-existing node that lies closest to the chosen node. If,
on the other hand, the discretization direction index of the pre-existing node is equal to 3,
remove this node from all lists once and for all. An example is illustrated in Fig. 3c.

(h) Update the node list, the discretization-direction list, and the usage list. A new
node located on the left or on the right of the chosen node receives, respectively, the
discretization-direction index 1 or 2. If a pre-existing node has replaced the new node in
step (6)(g), then it receives the usage label 1; otherwise it receives the usage label 0. The
chosen node label is switched to 1; this node will not be used again as a starting point. An
example is illustrated in Fig. 3c.

(i) With the node lists updated, reparametrize the curve and recompute the coeffi-
cients of the cubic spline.

(j) If all nodes have a usage list index of 1, stop the computation; otherwise return
to step (6)(a) and repeat the process.

After the contour discretization has been completed, the ratios of successive line segment
arc lengths are re-examined. Steps (6)(b) and (6)(e) impose restrictions on the variations of
segment lengths, but the resulting distributions may violate the required criteria because of
the replacement of a new node with a pre-existing node in step (6)(g). Pronounced variations
become prevalent for contours with complex shapes. If the testing associated with a specified
parameterφ is not satisfied everywhere on the curve, then the angleα is modified, and steps
(1)–(6) are repeated until all length segment ratios fall within the range(1/φ, φ). Setting
φ equal to 1 produces evenly spaced points, where the arc length between two points is
proportional to the minimum of the absolute value of the radius of directional curvature.
In our implementation, the modification ofα was done automatically by specifying factors
for increasing or decreasing its value.

The variables and parameters of the method just described are summarized in Table I.
The number of contour points placed around the contour is an implicit function of the
four numerical parametersα,1smin, 1smax, andφ, with the precise functional form de-
pending on the complexity of the contour shape. Several examples of point distributions
are presented in Fig. 4. Figure 4a shows the trace, in the azimuthal plane of left-and-right
symmetry, of the interface of a liquid drop moving along a cylindrical tube in pressure-
driven flow, computed from a dynamic simulation using the boundary-element method
starting from the spherical shape [3]. The upper and lower panels show, respectively, the
point distribution before and after the application of the advancing front method with
α= 0.395π, φ= 1.4,1smin= 2 sin(α/2)/|κc|, and1sMax= 201sMin. Two notable features
are the dimpled shape of the interface at the rear of the drop, with regions of negative direc-
tional curvature, and the conical shape of the front, with regions of large positive curvature.
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TABLE I

Variables and Parameters for Contour-Discretization

by the Advancing-Front Method

Variable or parameter Function

1 Discretization direction Index Indicates direction of discretization.
2 Usage index Marks a previously examined node.
3 α Specified angle to control point

spacing according to curvature.
4 (1smin,1smax) Specified window of point spacing.
5 φ Ratio of successive segment lengths

lies within the window (1/φ, φ).

Inspecting the upper panel, we notice that the clustering of the marker points at the rear has
produced an unacceptable point distribution, and this was a reason for halting the simulation.
The redistributed marker points shown at the lower panel describe the shape of the interface
in an economical fashion. In particular, the arc length between successive marker points
varies smoothly even though the magnitude of the curvature shows pronounced variations.

Figures 4b and 4c illustrate the performance of the method for three-dimensional lines.
Before discretization, the point distribution in Fig. 4b is smooth everywhere except near
the two regions of high curvature. The advancing front method accommodates the strong

FIG. 4. (a) Illustrations of improved distribution of marker points along the trace of a slipper-shaped drop
in the mid-plane [3]. (b), (c) Improved distributions of marker points along three-dimensional curves with large
variations in curvatures.
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FIG. 4—Continued
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variation in curvature by allocating a larger number of point relative to the lower curvature
region, while maintaining a smooth variation in arc length between adjacent nodes. Figure 4c
demonstrates the effectiveness of the method under quite demanding conditions.

2.2. Contour Discretization by Local Representation with Circular Arcs

We developed and implemented an alternative contour discretization algorithm based on
local interpolation that involves the following three tests:

(1) Compute the circular arc that passes through all trios of successive points using
the method discussed in [21]. If the angle subtended by the arc center and the first and third
point is higher than a present threshold, then discard the middle point and introduce two
new points at even intervals along the arc.

(2) Examine the arc length between two successive nodes. If it is greater than a present
threshold, introduce a new node mid-way between the two nodes. The new node is placed
on the blended forward-backward arc.

(3) Re-examine the arc length between two successive nodes. If it is less than a present
threshold, consolidate the two nodes into one node located on the blended forward-backward
arc. Consolidation is allowed only if the resulting point distribution does not violate the
first two criteria.

This method is much faster and easier to implement than the advancing-front method
described earlier, but may produce imperfect distributions where the ratios of the arc
lengths of successive pairs of points are unacceptably large or small, even though regions
of high curvature are described with good resolution. If the objective is to simply discretize
the line, pronounced arc length variations may be tolerated. But if the contour points are
the vertices of triangles defining a surface, large variations will undermine the quality of
the triangulation.

2.3. Open Surface Discretization

Like the contour advancing-front discretization method described in Subsection 2.1, the
surface advancing-front discretization method uses the curvature of the surface to generate
flat triangular elements each defined by three nodes, advancing from regions of highest
curvature to regions of lower curvature. Ideally, the distance between two vertices of a
triangle should be inversely proportional to the magnitude of the directional curvature of
the surface in the direction of these two points. After the primary flat triangles have been
defined, six-node quadratic triangles that share the nodes of the flat triangles are generated
by surface interpolation. Thesurface definition dataconsist of the coordinates of the marker
points defining the curved triangles, and a connectivity list associating the triangle and vertex
numbers.

The method proceeds according to the steps outlined below. The geometrical variables
necessary in the individual steps are computed either from available analytical expressions,
or by interpolation through an underlying coarse grid of quadratic triangular elements using
the method discussed in Subsection 2.4.

(1) Describe the contour bordering the open surface with a number of nodes using the
methods described in Subsections 2.1 and 2.2, compute the distances between successive
marker points, and introduce a front list containing the numbers of the nodes that define the
edges and the length of the edges.



               

TRIANGULATION BY THE ADVANCING-FRONT METHOD 71

FIG. 5. Introduction of a new marker pointC on a surface, appended at a distance1s from a node in the
direction of tangent vector at pointM .

(2) Choose the smallest segment on the front list, label the end-points of this segment
as pointA and pointB, and compute the unit vectors normal to the surface at the locations
of the end-points,nA andnB. Introduce the mid-pointM on the line segmentAB, and
approximate the unit vector normal to the surface,nM , and the unit vector tangent to the
surface and perpendicular to the segmentAB at the pointM, tM , with the expressions

nM
∼= 1

2
(nA + nB), tM

∼= 1

|xB − xA|nM × (xB − xA) (1)

as depicted in Fig. 5.
(3) Compute the maximum magnitude of the normal surface curvature at the location

of the pointM , denoted as|κmax|. Let ξ andη be a set of two surface curvilinear coor-
dinates. The normal curvature in the direction of the generally non-unit tangential vector
t(λ)= tξ + λtη, wheretξ andtη are the unit tangential vectors along theξ andη axes, and
λ is a free parameter, is given by [22]

κ(λ) = − a+ 2bλ+ cλ2

A+ 2Bλ+ Cλ2
. (2)

The coefficientsA, B, and C define thefirst fundamental formof the surface, and the
coefficientsa, b, andc define thesecond fundamental formof the surface. Both sets of
coefficient are computed either from available analytical expressions or from the parametric
representation of the curved triangles that define an underlying coarse grid. Differentiating
the right-hand side of Eq. (2) with respect toλ, and setting the derivative equal to zero
yields a quadratic equation forλ whose solution indicates the directions of the minimum
and maximum normal curvature. Once these directions are available, the maximum of the
directional curvature follows from a simple computation.

(4) To define the third vertex of the triangle, designated as pointC in Fig. 5, we first
compute the preliminary triangle height1s from the expression1s= 2 sin(α/2)/|κMax|.
The numerical parameterα determines the skewness of the triangle. To prevent the formation
of too skewed a triangle, we further require that

1

φ
1sAB <

1s

δ
< φ1sAB, (3)
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whereδ is a numerical parameter set equal to
√

3/2. If the computed1s lies outside this
window, then we set it equal to the upper or lower limit.

Next, we introduce the new pointC′ located a distance1s away from the pointM in the
direction oftM , as shown in Fig. 5. Because of the surface curvature, the pointC′ will not
necessarily lie in the surface. To prevent this tangential departure, we apply a modification
of the iterative procedure developed by Nakahashi and Sharov [16] to projectC′ onto the
surface. When an underlying coarse grid is available, the procedure involves finding the
grid point in the unrefined surface that is closest to the pointC′, designated by the subscript
s, and computing a sequence of points that successively approach the surface, using the
recursive formula

x(i+1)
C = x(i )C +

1

2
nS
(
nS ·

(
xS− x(i )C

))
, (4)

wheren andx are, respectively, the unit normal vector and the position vector. This procedure
may fail to project the pointC′ on the surface at regions of high curvature, especially when
the surface definition data are sparse. To prevent this pitfall, we further adjust the position
of C′ using the interpolation method described in Subsection 2.4. At the final position, we
compute the unit vector normal to the surface.

(5) In this stage, we decide whether the pointC′ will be introduced as a new node,
or will be replaced by an existing node. For this purpose, we search for pre-existing nodes
within the radiusγ1s around pointC′, and form alocal point list; γ is a numerical para-
meter whose value was set equal to 0.75. The pointC′ is also appended at the end of the
local point list, provided that it does not lie within a pre-existing triangle.

The points in the local point list are then sorted according to distance from the middle
point M , closest to farthest, and successive pointsP from the local point list are used to
form the triangleAB P. A triangle is acceptable if it does not contain any other front-list
nodes, and the bisectorP M does not pierce through existing elements or intersect their
edges. If, at any time, a point from the local list satisfies all conditions, then it is adopted as
nodeC, and the search terminates even though all points in the local point list may have not
been examined. If no points from the local point list satisfies all conditions, then the value
of γ is increased by a preset factor, and this step is repeated until a suitable point is found.

(6) Having introduced the new elementABC, we update theconnectivity list, the
front list, and thenode list. In the connectivity list, the three vertices of the new element are
recorded under the element number. In the front list, the current frontAB as well as any
edges of elementABC that are already listed is removed, whereas those edges that have not
been previously recorded are added. Likewise, if pointC has not already been introduced,
it is added to thepoint list.

(7) Steps (2) through (6) are repeated until the front list has been exhausted.
(8) After the whole of the surface has been triangulated, a connectivity improvement

method callededge swappingis applied to reduce the element skeweness. The method
changes the common edges of neighboring elements based on the Delaunay circumcircle
criteria for flat domains. We found that, even though the surface is curved, a sufficiently
dense grid allows the successful application of the method implemented as described in the
next paragraph.

The circumcircle of a flat triangle is the circle passing through the three vertices. The
center of this circle, called the circumcenter, may lie inside or outside the triangle. As
the triangle becomes increasingly skewed, the circumcenter moves farther away from the
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FIG. 6. Illustration of edge swapping between neighboring triangular elements to give better shaped elements.
Swapping occurs when the circumcircle of triangleABC contains a vertexD of the neighboring triangleADB.

geometrical center of the triangle. As an example, let two adjacent trianglesABC and
ADB share the verticesA andB, as shown in Fig. 6. If the circumcircle of triangleABC
contains a pointD that lies outside this triangle, then the common edgeAB is discarded,
and a new edgeC D is introduced to create the new elementsADC and BC D from the
previous elementsABC and ADB. If the circumcircle does not contain such a pointD,
then the triangle remains unchanged. The edge swapping technique maximizes the minimum
angles of both triangles by reducing the radii of the circumcircles. Edge swapping does not
introduce new marker points, neither does it change the total number of elements. It should
be noted, however, that in some cases edge swapping might lead to worse representations
of a discretized surface, and it is thus not a panacea.

(9) The flat triangular elements are transformed into six node quadratic triangular
elements by projecting the mid-points of the edges onto the surface. The unit normal vectors
of these points are computed by analytical evaluation by means of interpolation through a
coarse grid. The connectivity and the point lists are updated to include the mid-points.

The variables and parameters of the numerical method are summarized in Table II. The
effectiveness of the method was tested and confirmed by performing a number of tests to
be discussed in Section 4.

2.4. Grid-to-Grid Interpolation

The accurate computation of the position vector, the unit normal vector, and the directional
surface curvature are necessary for the successful implementation of the AFM. When the
surface represents a fluid interface containing, for example, a surfactant, regridding must
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TABLE II

Variables and Parameters for Surface Discretization

by the Advancing-Front Method

Variable or parameter Function

1 Connectivity list Explained in text.
2 Front list Explained in text.
3 Point list Explained in text.
4 α Specified angle to control edge length

according to curvature.
5 γ Search parameter for admitting a new node.
6 φ Parameter to control a triangle height.
7 δ Parameter to control element aspect ratio.

be accompanied by interpolation for the surfactant concentration, and the interpolation
should be sufficiently accurate so that unphysical Marangoni stresses due to surface-tension
gradients are not introduced. It was mentioned earlier that the interpolated geometrical
and physical variables can be obtained either by means of analytical evaluation or by
interpolation through an underlying coarse grid. Interpolation is the only alternative when
performing dynamic regridding in the course of a simulation, except at the initial instant.

The interpolation method projects a new marker point onto the underlying old grid, and
interpolates for the surface variables through the element that hosts the projection. The
performance of the method is sensitive to the identification of the host element.

Two methods were considered for identifying the host element. LetC be the marker point
of interest where interpolation is to be performed. The first method finds the host element
for point C by first projecting it in the plane that is defined by the three vertex nodes of
each triangle, and then determining whether or not the projection lies within the triangle.
The interpolation is carried out using the isoparametric representation; the host element is
mapped from the physical space to the local parametricξ, η space, and the interpolation is
carried out as discussed in Ref. [21]. In particular, in order to find the appropriate values
of ξ andη, we solve a system of two quadratic equations that define the projection of the
marker point. The implementation of this method is straightforward, but difficulties arise
when the projection lies too close to an element edge, whereupon the search method may
find either no host element or two host elements. To prevent this occurrence, conditions
can be specified for the proper identification of the host element, but this complicates the
numerical method. As an alternative, we implemented a simpler but more laborious method
that exploits the flexibility of the AFM.

First, we find the marker point on the old grid that is closest to the pointC, and identify
all elements that share this marker point. Second, we partition all elements in the list into
a network of sub-triangles based on the local parametric variablesξ andη. In the present
implementation, increments of 0.01 were used for1ξ and1η. Third, we compute the
Cartesian coordinates of every subgrid point based on the local parametric representation.
Fourth, we temporarily store the subgrid point that is closest to the pointC as pointC′′.
The same procedure is followed for the rest of the elements listed in the first step, and the
temporary pointC′′ is continuously updated when a subgrid point closer to pointC has
been found. Once all elements on the list have been checked, the pointC is replaced by the
pointC′′, and the desired surface variable at the new pointC is computed by interpolation.
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It should be noted that a minor adjustment in the position of marker point during the
triangulation does not impair the effectiveness of grid generation, neither does it violate
the imposed restrictions. On the contrary, the method effectively prevents errors caused by
the iterative projection discussed in step (7) of the surface discretization, and minimizes
possible surface distortions caused by continuous re-triangulation.

To test the effectiveness of the method, each component of the interpolated unit vectors
normal to a biconcave disk were graphed over the entire surface. Since, the number of
elements and marker points vary from the new grid to the old grid, the graphical represen-
tation is a proper way of examining the accuracy of the method. Figures 7a and 7b show
the x component of the normal vector distribution over the flat side of the original and
re-triangulated biconcave disk. Considering the moderate number of elements, and keeping
in mind that the normal vector is a sensitive function of the surface geometry, the results
appear satisfactory.

3. ADVANCING-FRONT METHOD FOR CLOSED SURFACES

The method for triangulating a closed surface is similar in many respects to that for an
open surface discussed in Section 2. The main difference lies in the generation of the initial
front list before the surface discretization. In the case of an open surface, the front list is
generated by discretizing the boundary curve. In the case of a closed surface, the initial
front list is generated by introducing a triangular element at the region of highest magnitude
of mean or directional curvature.

We begin by determining the marker point with the highest magnitude of the mean cur-
vatureκm or directional curvatureκc, named pointA. Among all marker points defining the
elements that share the marker pointA, we find the one with the highest magnitude or mean
or directional curvature, excluding pointA, named pointB. In the third step, we compute
the unit vector directed from pointA to point B and the edge distance1s= 2 sin(α/2)/κm

or 1s= 2 sin(α/2)/κc, and determine a new location for pointB. The normal vector at
the new location is computed by interpolation, as discussed in Subsection 2.4. The third
point C defining the triangleABC is determined by following steps (3)–(6) of the surface
discretization method. The initial front list for the surface discretization contains the nodes
and length defining the edges of the triangular elementABC.

Once the front list has been established, steps (2)–(9) described in the surface dis-
cretization method are applied to discretize the rest of the surface. The effectiveness of the
method was tested and confirmed by performing a number of tests, as will be discussed in
Section 4.

4. APPLICATIONS

The algorithms described in the preceding sections were applied to describe the shapes of
several stationary or evolving, open or closed surfaces. Sample results, along with a critical
discussion of the performance of the method, are now presented.

4.1. Stationary Surfaces

Figures 8a–8c show the triangulated surface of a biconcave disk whose shape is sim-
ilar to that of an undeformed red blood cell, and Figs. 8d–8f show the triangulated
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FIG. 7. Validation of surface interpolation. Gray-scale comparison of thex-component of the unit normal
vector on (a) the regularly gridded of a biconcave disk and (b) the re-gridded surface with much fewer elements.

FIG. 8. Discretization of the biconcave disk and slipper-shaped drop by various methods. (a) Triangulation
of a biconcave disk by projection of marker points descending from an icosahedron. (b), (c) Open-surface and
closed-surface discretizations by utilizing the underlying grid shown in (a). (d) Magnification of a single slipper
shaped drop shown on Fig. 1. (e), (f) Open-surface and closed-surface discretizations by utilizing the underlying
grid shown in (d).
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FIG. 9. (a), (b) Evolution of an initially flat disk whose center is located at the streamline of maximum velocity
of an unbounded parabolic flow, at successive times.

surface of the slipper-like droplet mentioned in the Introduction. Both shapes have a re-
flection symmetry with respect to a mid-plane. The triangulations were produced using
either the open-surface or the closed-surface discretization algorithm. In the first case, the
surface generated on the upper half-space was reflected to the bottom half-space to give a
closed surface. Thus, whereas the open-surface algorithm produces a shape that respects the
symmetry of the shape, the closed-surface algorithm may generate triangles whose edges
cross the mid-plane. Regridding was effected by interpolation through the original grid
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FIG. 9—Continued

that was generated by analytical expressions or supplied from the results of a dynamical
simulation [3].

For the open-surface triangulations shown in Figs. 8b and 8e, we usedα= 0.315 and
0.375, respectively, for the biconcave disk and the slipper shape. In both cases, the redefined
grid is comparable in quality, or superior to the original one. The improvement is particularly
evident in the case of the slipper shape where the congested elements in the dimpled area of
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the original grid are replaced by fewer elements, and the poorly represented high curvature
region around the mid-plane is described by a denser concentration of elements. For the
closed-surface triangulations shown in Figs. 8c and 8f, we usedα= 0.17 for both the
biconcave disk and the slipper shape, and obtained triangulations that are comparable in
quality with those resulting from the open-surface triangulation. The CPU time necessary
for these triangulations is on order of a few minutes on a SUN SPARCstation 20. The
closed-surface discretization is faster than the open-surface discretization. The difference
is due to additional work necessary for checking the line segment variation in the curve
discretization portion of the method.

4.2. Evolving Surfaces

In a more demanding series of tests, we used the open-surface discretization algorithm
to adaptively describe the evolution of several types of surfaces that are convected either
passively or actively under the action of a specified flow. The marker points are material
point particles moving with the fluid velocity. In the case of an active surface, the velocity
depends on the instantaneous shape of the surface or, more precisely, on the instantaneous
relative position of the marker points.

Passively deforming disk in parabolic flow.Figures 9a–9b show the evolution of a flat
circular disk convected passively in an unbounded rectilinear parabolic flow. At the ini-
tial instant, the disk is placed perpendicular to the streamlines of the unidirectional flow,
and its center lies on the streamline with the maximum velocity. The numerical param-
eters were kept at the fixed valuesα= 0.523 andφ= 1.4 throughout this computation.
Regridding was performed at the times corresponding to the shapes displayed. As the
disk is stretched, while remaining axisymmetric, the number of elements is increased in
a monotonic fashion so that the surface is described with adequate resolution at every
stage.

Figure 10 shows the evolution of a disk whose center lies off the axis of the parabolic
flow. These results were obtained withα= 0.807 andφ= 1.4. In this case, the disk de-
forms in a non-axisymmetric fashion and maximum mean curvature develops off the
axis. The quality of the adaptive triangulation is comparable to that of the axisymmetric
deformation.

Deformation of a viscous drop in simple shear flow.In the most interesting and computa-
tionally intensive series of tests, we combined the advancing-front method with a boundary
integral method for Stokes flow to compute the large deformation of a liquid drop with
viscosityλµ suspended in an infinite ambient fluid with viscosityµ, under the action of a
simple shear flow directed along thex axis with velocityu= (Gy, 0, 0);G is the constant
shear rate, and the interface has a constant surface tensionγ . The boundary element method
is described in detail in Refs. [1–4]. Briefly, the numerical procedure involves solving an
integral equation for the three components of the velocity over the interface, where the
solution is assumed to vary in a quadratic fashion over the curved six-node triangles. The
mean curvature of the interface involved in the integral equation is computed analytically
from the local parametric representation.

Several previous experimental, analytical, and numerical studies have shown that whenλ

is less than approximately 4, there is a critical capillary numberCa=µGa/γ above which
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FIG. 10. Evolution of an initially flat disk whose center is located off the streamline of maximum velocity of
an unbounded parabolic flow, at successive times.
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the drop continues to deform without reaching a steady shape, and this leads to disintegration
or breakup at long times;a is the equivalent drop radius. The process of continued deforma-
tion and disintegration was described in qualitative terms by Rumscheidt and Mason [23].
Whenλ is higher than about 4, the drop deforms and reaches a steady state irrespectively
of the value of the capillary number.

The deformation of the drop is typically described in terms of the Taylor deformation
parameterD= (L − B)/(L + B), whereL and B are the maximum and minimum drop
dimensions in thexy plane. The orientation of the drop can be expressed in terms of
the angleθ that the maximum axis of deformation forms with thex axis. Figures 11a
and 11b show graphs ofD and θ at steady state forλ= 1 computed from the present
simulations with the open-surface triangulation followed by reflection, along with results
presented in previous experimental and computational investigators. At low capillary num-
bers the present results coincide with those obtained by the previous numerical studies of
Rallison [24] and Kennedyet al. [1], and are in excellent agreement with the experimen-
tal results of Rumscheidt and Mason [23]. As the capillary number is raised, the present
results stay close to the experimental results almost all the way up to the critical capillary
number of 0.42+ above which steady stapes are not established. Prior numerical results

FIG. 11. Deformation of a viscous drop in simple shear flow. Comparison of (a) the steady-state drop defor-
mation parameterD, and (b) the steady-state drop orientation angleθ measured in degress for viscosityλ= 1.0;
×, boundary integral computations;4, boundary integral computations of Kennedyet al.[1], h, boundary integral
computation of Rallison [24];s, experimental results by Rumscheidt and Mason [23]; the solid line represents
the asymptotic results by Cox [25] for small deformation.
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FIG. 11—Continued

show some deviations that may be attributed to numerical inaccuracies due to insufficient
triangulation.

Figures 12 and 13 illustrate sequences of deforming shapes following the impulsive appli-
cation of the simple shear flow, starting from the spherical shape. The first case corresponds
toλ= 1,Ca= 0.45, and the second case toλ= 0.08,Ca= 0.55. In both cases, the capillary
number is supercritical; that is, the drop continues to elongate without reaching a steady
state. In the first case, we used a time step of 0.01/G, and carried out the simulation up to
time 8.0/G; in the second case, we used a time step of 0.02/G, and carried out the simula-
tion up to time 5.6/G. Each simulation required a total CPU time on a SUN SPARCstation
20 on the order of 5 days.

During the early stages of the deformation, the shapes of the drops shown in Figs. 12
and 13 show similar behaviors, but differences arise when the deformation becomes large.
In the first case, the drop develops a cylindrical shape with bulbous ends; in the second
case, a capillary Rayleigh instability develops during the final stages of the deformation,
causing the drop to break up into two pieces. The capillary instability in the first case seems
to be delayed by the appreciable viscosity of the drop fluid, or else is suppressed by the
ambient shear flow. In the classification of Rumscheidt and Mason [23], the drop shown
in Fig. 12 shows a B-2 type of deformation, whereas the drop shown on Fig. 13 shows
a B-1 type of burst. Rumscheidt and Mason [23] recorded B-1 burst forλ= 1, and B-2
burst forλ= 0.7, which seems to contradict the trends observed in our simulations. It is
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FIG. 12. (a) Illustration of a continuously deforming drop forλ= 1.0 andCa= 0.45 at timesGt= 1.6, 3.4,
4.6, 6.2, 7.8; (b) Plane view and three-dimensional perspectives at timeGt= 7.8.

known, however, that the capillary number is an important parameter in determining the long
time behavior.

In the simulations described earlier, regridding by the AFM was done after a fixed number
of times steps, typically on the order of 20. In principle, triangulation should be enabled
when the quality of the grid—measured by the minimum internal angle of a triangle, by
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FIG. 12—Continued

the angle subtended by the three points that define each side of a triangle, or a combination
thereof—falls below a specified level. In practice, in order to avoid capillary instabilities,
the time step is adjusted to scale with the minimum triangle size, and triangulation after a
fixed number of time steps is appropriate.

Repetitive triangulation with a fixed value of the discretization parameterα leads to an
excessive number of triangles at a relatively early stage of the motion, and these could not
be accommodated by the available computational resources. To circumvent this difficulty,
tests were performed on a slowly deforming drop for a short period of time to understand
the behavior of the performance of the AFM in more quantitative terms. Figure 14 shows
a graph of the total number of elements versus the normalized maximum curvature of the
interface for several values of the parameterα. With these results as a point of departure,
the following empirical polynomial equation was adopted to control parameterα at the time
stepi ,

α(i ) = α(i−1) + 2ψπ(1D −1D2−1D3)/180,

where1D= D(i ) − D(i−1), andψ is a relaxation factor. All simulations were performed
with an initial value forα of 0.28, and the coefficientψ was chosen to lie in the range (0, 2)
depending on the value of the capillary number.



      

FIG. 13. Illustration of a continuously deforming drop forλ= 0.08 andCa= 0.55 at timesGt= 0.8, 1.6,
2.4, 3.2, 4.0, 4.2.

FIG. 14. Sensitivity of the Advancing-Front Method to changes in surface geometry for a drop undergoing
small deformations;q, α= 0.253;h, α= 0.263;+, α= 0.274; ∇, α= 0.287;s, α= 0.300; ∗, α= 0.315.
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